skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raut, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An in-beam gamma-ray spectroscopy study of the even–even nucleus92Mo has been carried out using the30Si +65Cu,18O +80Se reactions at beam energies of 120 and 99 MeV, respectively. Angular distribution from the oriented state ratio (RADO) and linear polarization (Δasym) measurements have fixed most of the tentatively assigned spin-parity of the high-energy levels. A large-scale shell-model calculation using the GWBXG interaction has been carried out to understand the configuration and structure of both positive and negative parity states up to the highest observed spin. The high-spin states primarily originate from the coupling of excited proton- and neutron-core structures in an almost stretched manner. The systematics of the energy required to form a neutron particle-hole pair excitation,νg9/2→νd5/2, is discussed. The lifetimes of a few high-spin states have been measured using the Doppler shift attenuation method. Additionally, a qualitative argument is proposed to explain the comparatively strong E1 transition feeding the 7310.9 keV level. 
    more » « less
  2. High spin states in 104 Ag were populated via heavy-ion ( 32 S) induced fusion evaporation reaction at a beam energy of 110 MeV. The de-exciting γ-rays were detected by 18 Compton suppressed HPGe clover detectors, placed in different (θ, φ) angles. Spin of several excited states were assigned firmly from the present angular correlation measurement. 
    more » « less
  3. Excited states of the 64Cu (Z=29,N=35) nucleus have been probed using heavy-ion-induced fusion evaporation reaction and an array of Compton-suppressed Clovers as detection system for the emitted γ rays. More than 50 new transitions have been identified and the level scheme of the nucleus has been established up to an excitation energy Ex∼6 MeV and spin ∼10ℏ. The experimental results have been compared with those from large-basis shell-model calculations that facilitated an understanding of the single-particle configurations underlying the level structure of the nucleus. 
    more » « less